Data Analysis - 60 Hours

Blog Image
45%


Course Description

Data Science, Machine Learning, Deep Learning and Artificial Intelligence

Objectives of the Program

  •  To enable participants understand how Data Science is used in every aspect of our daily lives and businesses
  •  To enable the participants to learn basics of Python.
  •  To enable the participants to learn Data Science/Machine learning/Deep Learning using Python.
  •  To empower the participants with sufficient knowledge to use latest technologies of Data Science (Hands-On).
  •  To make the participants understand overview of how Exploratory Data Analysis works.
  •  To provide the participants Hands-on experience in Data science concepts.
  •  To provide the participants Hands-on experience in Machine Learning concepts.
  •  To empower the participants with sufficient knowledge to use latest technologies of Data Science/Machine Learning/Deep Learning/ Artificial Intelligence (Hands-On).
  •  Overview of the Program Content
  •  Introduction to Data Science, Machine Learning, Deep Learning and Artificial Intelligence
  •  Basics of Python and Hands-on on Python
  •  Introduction to Data Science using Python
  •  Hands on session on Data Science with Python [Database Connectivity with PYTHON: Performing Database Transactions (Inserting, Deleting, and Updating the   Database)]
  •  Introduction to Machine Learning and its types
  •  Examples Overview of Machine Learning packages in Python
  •  Introduction to Deep Learning and its types
  •  Project in Data Science/Machine Learning /Artificial Intelligence

CURRICULUM DETAILS: MODULES AND CHAPTERS

Module 1: Python for Data Science/Machine Learning/Deep Learning

  •  Basic building blocks of python
  •  Data Types
  •  Operators
  •  Control Structure
  •  Functions
  •  Data Structures
  •  String Operations and Regular Expressions
  •  File Handling
  •  Exception Handling
  •  The Object-Oriented Approach

Module 2: Maths Behind Data Science

  •  Statistical Analysis: Descriptive Statistics & Inferential Statistics
  •  Hypothesis Testing

Module 3: Data Science (Exploratory data analysis (EDA) /Data wrangling/
Data Munging/Data Cleaning Techniques/ Data Preparation/Feature
Engineering)

o Data Science Library and data visualization Using Python
o Data Exploration (Univariate/Bivariate/Multivariate Analysis)
o Missing value treatment
o Outlier treatment
o Categorical to Numerical
o Feature Rescaling
o Feature (Variable) transformations
o Correlation Analysis
o Feature selection Methods

Module 4: Data Visualization using Tableau

Tools, Languages and Libraries Used:

1. Sql
2. Python
3. Anaconda
4. Jupyter Notebook
5. Google Colab
6. Tableau
7. Numpy
8. Pandas

9. Matplotlib
10. Seaborn
11. Sklearn
12. Scipy
13. Tensorflow
14. Keras