Advanced Computer Vision- 50 Hours

Blog Image
20%


Course Description

Data Science, Machine Learning, Deep Learning and Artificial Intelligence

Objectives of the Program

  •  To enable participants understand how Data Science is used in every aspect of our daily lives and businesses
  •  To enable the participants to learn basics of Python.
  •  To enable the participants to learn Data Science/Machine learning/Deep Learning using Python.
  •  To empower the participants with sufficient knowledge to use latest technologies of Data Science (Hands-On).
  •  To make the participants understand overview of how Exploratory Data Analysis works.
  •  To provide the participants Hands-on experience in Data science concepts.
  •  To provide the participants Hands-on experience in Machine Learning concepts.
  •  To empower the participants with sufficient knowledge to use latest technologies of Data Science/Machine Learning/Deep Learning/ Artificial Intelligence (Hands-On).
  •  Overview of the Program Content
  •  Introduction to Data Science, Machine Learning, Deep Learning and Artificial
  •  Intelligence
  •  Basics of Python and Hands-on on Python
  •  Introduction to Data Science using Python
  •  Hands on session on Data Science with Python [Database Connectivity with PYTHON: Performing Database Transactions (Inserting, Deleting, and Updating The   Database)]
  •  Introduction to Machine Learning and its types
  •  Examples Overview of Machine Learning packages in Python
  •  Introduction to Deep Learning and its types
  •  Project in Data Science/Machine Learning /Artificial Intelligence

Module 1: Introduction to Neural network for Deep Learning

  •  Introduction to Tensorflow/Keras/Pytorch
  •  Biological Neuron/ Artificial Neuron (Perceptron)
  •  Perceptron/MLP/ Vanilla Neural Network/ANN
  •  Types of ANN: Sequential ANN and Functional ANN
  •  Weight Initialization and Biases
  •  Activation Functions
  •  Backward Propogation
  •  Gradient Descent
  •  Learning rate
  •  Optimizers
  •  Regularization
  •  Loss Function and Cost Function
  •  Hyperparameters
     

Module 2: Computer vision

  •  Introduction to computer Vision and Image Processing
  •  Introduction to CNN
  • Introduction to CNN Architectures and Transfer Learning
  • Image Classification using CNN and Transfer Learnin

Module 3: Advanced Computer Vision

  • Object Detection
  •  Image Segmentation
  •  Semantic Segmentation

Module 4: Unsupervised Deep Learning

o Introduction to GAN and its types
o Introduction to Autoencoder

Tools, Languages and Libraries Used:

  • 1. Sql
  • 2. Python
  • 3. Anaconda
  • 4. Jupyter Notebook
  • 5. Google Colab
  • 6. Tableau
  • 7. Numpy
  • 8. Pandas
  • 9. Matplotlib
  • 10. Seaborn
  • 11. Sklearn
  • 12. Scipy
  • 13. Tensorflow
  • 14. Keras

Mr. Arpit Yadav
Senior Data Scientist in AIML

Subject Matter Expert